Thema	Bereiche	Seite
Grundlagen	Elektronenverteilung auf Atomschalen	1-3
	Elementarladung	1-3
	Elektronen in einer Ladungsmenge	1-3
	Atommasse und –abmessungen	1-3
	Elektronenleitung in Metallen	1-3
Widerstandberechnung	mit spezifischem Widerstand	1-4
· ·	mit spezifischer Leitfähigkeit	1-4
Grundformeln	Kreisfläche, Einheiten der Arbeit (Energie)	1-4
Spezifische Leitfähigkeit	wichtige Materialien	1-4
	Eigenleitfähigkeit von Halbleitern	1-5
Elektronenablenkung	im elektrischen Feld	1-5
Ç	im magnetischen Feld	1-5
Grundlagen	Geschwindigkeit eines Elektron im Vakuum	1-6
•	Daten von Dioden BAY 18 und 1N4148	1-7
	differenzieller Widerstand einer Diode	1-7
Spannung	Definition	1-8
, ,	Scheitelwert	1-8
	Spitze-Spitze-Wert	1-8
	Arithmetischer Mittelwert	1-8
	Effektivwert	1-8
Gleichrichterschaltungen	M1-Schaltung (Einweg)	1-9
ŭ	M2-Schaltung (Zweiweg-Mittelpunkt)	1-9
	B2-Schaltung (Zweiweg-Brücken)	1-9
Glättung	Berechnung Bauteile	1-10
G	Glättungsfaktor	1-10
	Stabilisierungsfaktor	1-10
E-Reihe	E6, E12 und E24-Reihe	1-11
Zener-Diode	Berechnung	1-11
Transistor	Darstellung normal und Ersatzschaltbild	1-12
	Darstellung als Vierpol	1-12
	Kennlinienfeld	1-12
	Berechnungen am Transistor	1-13
	Regeln für Wechselstrom-ESB	1-13
Arbeitspunkteinstellung	Basis-Spannungsteiler	1-14
-	Basis-Vorwiderstand	1-14
Stabilisierung des Arbeitspunktes	Stromrückkopplung	1-15
	Spannungsrückkopplung	1-15
	NTC-Rückkopplung	1-15
Emitterschaltung	Schaltbild	1-16
-	Eigenschaften	1-16
	Wechselstrom-ESB	1-16
	Oszillogramme	1-17
Kollektorschaltung	Schaltbild	1-18
-	Eigenschaften	1-18
	Wechselstrom-ESB	1-18
	Oszillogramme	1-19
Basisschaltung	Schaltbild	1-20
-	Eigenschaften	1-20
	Wechselstrom-ESB	1-20

Thema	Bereiche	Seite
Basisschaltung	Oszillogramme	1-21
H-Parameter für Transistor	Berechnungen	1-22
Wechselstrom-ESB für Transistor	Berechnung und Darstellung	1-22
Transistor als Schalter	Schaltbild	
	Berechnungen	1-23
	Kennlinie	1-23
Transistor und Induktivität	Schaltbild	1-24
	Signalverlauf	1-24
	Kennlinie	1-24
Transistor und Kondensator	Schaltbild	1-24
	Signalverlauf	1-24
	Kennlinie	1-24
Schaltzeiten von Transistoren	Signalverläufe	1-25
	Berechnungen	1-25
Feldeffekttransistoren	Übersicht	1-26
	Kennwerte	1-26
J-FET (selbstleitend)	Funktionsprinzip	1-27
	Ansteuerung	1-27
	Funktionsweise	1-27
	Kennlinien	1-27
MOS-FET (selbstleitend)	Funktionsprinzip	1-28
•	Ansteuerung	1-28
	Funktionsweise	1-28
	Kennlinien	1-28
MOS-FET (selbstsperrend)	Funktionsprinzip	1-28
	Ansteuerung	1-28
	Funktionsweise	1-28
	Kennlinien	1-28
Steuerkennlinie eines FET	Kennlinie	1-29
	Berechnungen	1-29
Steilheit S eines FET	Berechnungen,typische Werte der FET-Typen	1-29
	typische Werte der FET-Typen	1-29
Ausgangskennlinie eines FET	Kennlinie	1-30
Source-Schaltung	Schaltbilder	1-31
	Wechselstrom-ESB	1-31
	Parachaungan	1-31
	Berechnungen	1-32
Drain-Schaltung	Schaltbilder	1-33
	Wechselstrom-ESB	1-33
	Parachaungan	1-33
	Berechnungen	1-34
Gate-Schaltung	Schaltbilder	1-34
-	Wechselstrom-ESB	1-34
	Berechnungen	1-35

Elektronenanzahl auf der jeweiligen Schale:

$$Z = 2 \bullet n^2$$

Z = maximale Anzahl der Elektronen auf der Schale

n = Nummer der Schale: K = 1, L = 2, M = 3, N = 4, O = 5, P = 6, Q = 7

Elementarladung:

$$e = 1,602 \cdot 10^{-19}$$
 As oder C (Coloumb)

Anzahl der Elektronen in einer Ladungsmenge:

$$Q = n \bullet e$$

$$n = \frac{Q}{e}$$

n = Anzahl der Elektronen

Q = Ladungsmenge in As

e = Elementarladung

Atommasse und -abmessungen:

Masse eines Proton: 1 Proton = $1,673 \cdot 10^{-27} kg$ Masse eines Neutron: 1 Neutron = $1,673 \cdot 10^{-27} kg$ Masse eines Elektron: 1 Elektron = $0,911 \cdot 10^{-30} kg$

Atomkernradius: $R = 10^{-12} cm$ Schalenradius: $u = 0.53 \cdot 10^{-8} cm$

Geschwindigkeit der Elektronen (nicht auf allen Schalen gleich): $V_{Elektron} = 1000 \frac{km}{s}$

Elektronenleitung in Metallen:

$$K \bullet T = \frac{m \bullet v^2}{2}$$

$$T = \frac{m \bullet v^2}{2 \bullet K}$$

$$v = \sqrt{\frac{2 \bullet K \bullet T}{m}}$$

K = Bolzmannkonstante = $1{,}38 \cdot 10^{-23} \frac{Ws}{K}$

T = Temperatur in K

m = Elektronenmasse

 $v = Geschwindigkeit in \frac{m}{s}$

Widerstandsberechnung

mit spezifischem Widerstand und spezifischer Leitfähigkeit:

$$R = \frac{\rho \bullet l}{A}$$

$$A = \frac{\rho \bullet l}{R}$$

$$l = \frac{R \bullet A}{\rho}$$

$$\rho = \frac{R \bullet A}{l}$$

$$\rho = \frac{1}{\chi}$$

$$\chi = \frac{1}{\rho}$$

R = Widerstand in Ohm

$$\rho$$
 = spezifischer Widerstand (Rho) in $\frac{\Omega \bullet mm^2}{m} \! = \! 10^{-4} \Omega cm$

I = Länge in m

A = Querschnittsfläche in mm²

$$\chi$$
 = spezifische Leitfähigkeit in $\frac{m}{\Omega \bullet mm^2}$

Rho kann auch noch anders berechnet werden:

$$\rho = \frac{1}{n \bullet e \bullet b}$$

n = Elektronendichte (Anzahl / cm³)

e = Elementarladung

b = Elektronenbeweglichkeit =
$$\frac{Geschwindigkeit}{elektrischeFeldstärke}$$
 in $\frac{\frac{cm}{s}}{\frac{V}{cm}} = \frac{cm^2}{Vs}$

Grundformeln:

$$A = r^2 \bullet \pi$$

$$r = \frac{d}{2}$$

$$A = \frac{d^2 \bullet \pi}{4}$$

Spezifische Leitfähgkeit:

Spezifische Leitfähigkeit von Kupfer: $\chi_{Cu} = 56 \frac{m}{\Omega \bullet mm^2}$

Spezifische Leitfähigkeit von Silber: $\chi_{Ac} = 62 \frac{m}{\Omega \bullet mm^2}$

Spezifische Leitfähigkeit von Gold: $\chi_{Au} = 48 \frac{m}{\Omega \bullet mm^2}$

Spezifische Leitfähigkeit von Alu: $\chi_{Al} = 36 \frac{m}{\Omega \bullet mm^2}$

Eigenleitfähigkeit von Halbleitern bei 20 °C:

Spezifische Leitfähigkeit von Silizium: $\chi_{Si} = \frac{1}{2 \cdot 10^5 \,\Omega cm} = 0.5 \cdot 10^{-9} \,\frac{m}{\Omega \cdot mm^2}$

Spezifische Leitfähigkeit von Germanium: $\chi_{Ge} = \frac{1}{4 \cdot 10^1 \Omega cm} = 2.5 \cdot 10^{-6} \frac{m}{\Omega \cdot mm^2}$

Hervorgerufen durch **Wärmeschwingung** (freigeschlagen, zurückgesprungen), **Oberflächenleitfähigkeit** (Außen fehlt Bindungselektron) und **Restverunreinigungen**. Bei Silizium: Bei Erhöhung von Temperatur um 10 K steigt die Leitfähigkeit um das 3-fache !! \Rightarrow Heißleiter = NTC

Elektronenablenkung im elektrischen Feld:

F = Ablenkkraft in N

E = elektrische Feldstärke in $\frac{V}{m}$

Q = Ladung in As oder C (Coloumb)

Elektronenablenkung im magnetischen Feld:

$$F = B \bullet I \bullet l$$

$$B = \frac{F}{I \bullet l}$$

$$I = \frac{F}{B \bullet l}$$

Strahlerzeugersystem

$$l = \frac{F}{B \bullet I}$$

oder

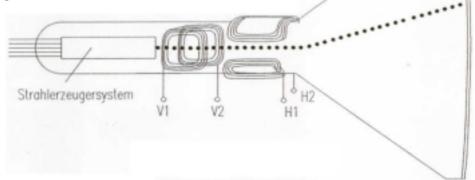
$$F = B \bullet v \bullet Q$$

$$B = \frac{F}{v \bullet Q}$$

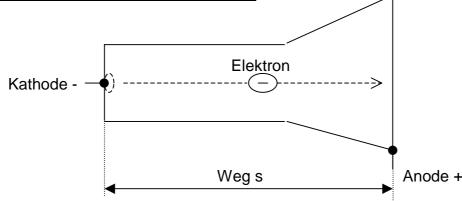
$$v = \frac{F}{B \bullet Q}$$

$$Q = \frac{F}{B \bullet v}$$

F = Ablenkkraft in N


B = magnetische Induktion in $\frac{Vs}{m^2}$

I = Stromstärke in A


l = wirksame Stromfadenlänge im Feld

 $v = Geschwindigkeit in \frac{m}{s}$

Q = Ladung in As oder C

Geschwindigkeit eines Elektrons in Vakuum

Arbeit ⇒ Bewegungsenergie (Arbeit an einem Elektron führt zur Bewegungse.)

$$W_{mech} = F \bullet s$$

$$W_{kin} = \frac{1}{2} \bullet m_0 \bullet v^2$$

$$E = \frac{U}{s}$$
 Einheit $E = \frac{V}{m}$

$$\Rightarrow W_{mech} = E \bullet Q \bullet S$$

$$\Rightarrow W_{mech} = \frac{U_{AK} \bullet Q \bullet s}{s} = U_{AK} \bullet Q$$

$$\Rightarrow \overline{W_{mech} = U_{AK} \bullet e^{-}}$$

$$\mathsf{mit} \ \ \overline{W_{\mathit{mech}} = W_{\mathit{kin}}}$$

$$\Rightarrow U_{AK} \bullet e^{-} = \frac{1}{2} \bullet m_0 \bullet v^{2}$$

$$\Rightarrow \boxed{v = \sqrt{\frac{2 \bullet U_{AK} \bullet e^-}{m_0}}} \text{ in } \frac{m}{s} \quad \text{Einheit: } \left[v = \sqrt{\frac{V \bullet As}{kg}} = \sqrt{\frac{Ws}{kg}} = \sqrt{\frac{Nm}{kg}} = \sqrt{\frac{kg \bullet m \bullet m}{s^2 \bullet kg}} = \sqrt{\frac{m^2}{s^2}} = \frac{m}{s}\right]$$

$$\Rightarrow \boxed{U_{AK} = \frac{v^2 \bullet m_0}{2 \bullet e^-}} \text{ in V} \qquad \text{Einheit:} \boxed{U_{AK} = \frac{\left(\frac{m}{s}\right)^2 \bullet kg}{As} = \frac{m^2 \bullet kg}{s^2 \bullet As} = \frac{Nm}{As} = \frac{Ws}{As} = \frac{V \bullet A}{A} = V}$$

W_{mech} = Mechanische Arbeit in Ws; W_{kin} = Kinetische (Bewegungs-) Energie in Nm

F = Kraft in N

s = zurückgelegter Weg in m

m₀ = Masse des Elektrons in kg

v = Geschwindigkeit

U_{AK}= Anoden-Kathoden-Spannung in V

Grunddaten von Halbleitern:

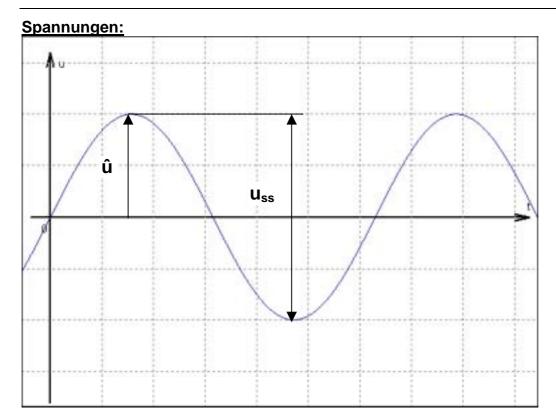
Diode BAY 18: $I_F = 10mA$

 $\begin{array}{l} U_R = 10 \text{ V} \\ I_R = 0,1 \text{ mA} \\ t_{rr} = 0,1 \text{ } \mu\text{s} \end{array}$

Diode 1N4148: $I_F = 10mA$

 $\begin{array}{l} U_R = 6 \text{ V} \\ I_R = 1 \text{ mA} \\ t_{rr} = 4 \text{ } \mu\text{s} \end{array}$

Differenzieller (Wechselstrom-) Widerstand einer Diode:


$$r = \frac{\Delta u}{\Delta i}$$

$$\Delta i = \frac{\Delta u}{r}$$

 $\Delta u = r \bullet \Delta i$

r = differenzieller (Wechselstrom-) Widerstand Δu = Spannungsänderung der Tangente an den Arbeitspunkt Δi = Stromänderung der Tangente an der Arbeitspunkt

je kleiner r desto besser ist die Diode ⇒ wenig Verlustleistung an der Diode

<u>Scheitelwert</u> einer Spannung = maximaler Wert bezogen auf 0V Bezeichnung: $\hat{u} = u_{max} = Amplitude = u_s$

<u>Spitze-Spitze-Wert</u> einer Spannung = Wert zwischen Maxima und Minima Bezeichnung: $u_{ss} = \hat{u} + |-\hat{u}| = 2 \bullet \hat{u}$

<u>Arithmetischer Mittelwert</u> einer Spannung = Differenz der Flächen über und unter der Zeitachse.

Muß bei reinen Wechselspannungen immer 0 sein !! Bezeichnung: U_{AV}

<u>Effektivwert</u> einer Spannung = Wert der Spannung, die benötigt wird, um die selbe Leistung aufzubringen wie eine gleich große Gleichspannung. Bezeichnung: U_{eff}

Formel:

bei Sinus:
$$\hat{u} = \sqrt{2} \bullet U_{eff}$$

$$U_{eff} = \frac{1}{\sqrt{2}} \bullet \hat{u}$$

bei Dreieck:
$$\hat{u} = \sqrt{3} \bullet U_{eff}$$

$$U_{eff} = \frac{1}{\sqrt{3}} \bullet \hat{u}$$

- bei Rechteck: $\hat{u} = U_{eff}$

<u>Augenblickswert</u> oder Momentanwert = Wert der Spannung bei einer bestimmten Zeit in einer Periode.

Bezeichnung: u_t , u_{mom} , u_{α}

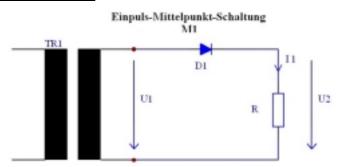
M1-Schaltung (Einweggleichrichter-Schaltung):

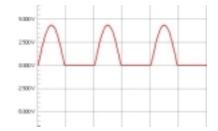
$$U_{1 \text{ eff}} = \frac{1}{\sqrt{2}} \bullet \hat{u}$$

$$\mathsf{U}_{2\,\mathsf{AV}} = \frac{1}{\pi} \bullet \hat{u}$$

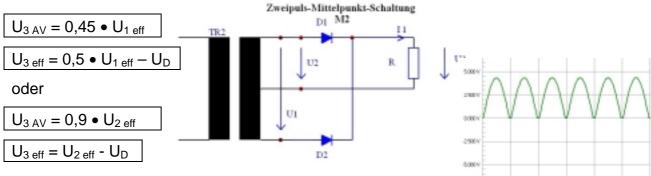
$$U_{2 \text{ AV}} = 0.45 \bullet U_{1 \text{ eff}}$$

$$U_{2 \text{ eff}} = 0.5 \bullet U_{1 \text{ eff}} - U_{D}$$


$$U_{2 \text{ eff}} = 0.35 \bullet \hat{u}$$


U₁ = Spannung vor der Gleichrichtung

U₂ = Spannung nach der Gleichrichtung


û = Scheitelspannung vor der Gleichrichtung

U_D = Druchbruchspannung der Diode

M2-Schaltung (Zweiweg-Mittelpunkt-Schaltung):

U₂ = Spannung vor der Gleichrichtung zwischen Mittelpunkt und Abgriff

 U_1 = Spannung vor der Gleichrichtung zwischen beiden Abgriffen

U₃ = Spannung nach der Gleichrichtung

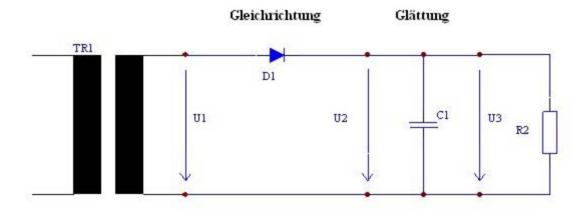
 U_D = Druchbruchspannung der Diode

B2-Schaltung (Zweiweg-Brückenschaltung):

$$U_{2 \text{ AV}} = 0.9 \bullet U_{1 \text{ eff}}$$

$$U_{2 \text{ eff}} = U_{1 \text{ eff}} - (2 \text{ x } U_{D})$$

U₁ = Spannung vor der Gleichrichtung


U₂ = Spannung nach der Gleichrichtung

U_D = Druchbruchspannung der Diode

Spannungsverlauf siehe M2-Schaltung

Zweiweg-Brückengleichrichtung B2

Achtung: Bei kleinen Eingangsspannungen Schwellenspannungen der Dioden beachten (Bei Si 0,7V, be Ge 0,3 V)!

Glättung:

$$C_L = \frac{\hat{u}}{R_L \bullet f_{Br} \bullet \Delta u_{Br}}$$

$$f_{Br} = \frac{\hat{u}}{R_L \bullet C_L \bullet \Delta u_{Br}}$$

$$\Delta u_{Br} = \frac{\hat{u}}{R_L \bullet f_{Br} \bullet C_L}$$

$$R_L = \frac{\hat{u}}{C_L \bullet f_{Br} \bullet \Delta u_{Br}}$$

$$\hat{u} = C_L \bullet R_L \bullet f_{Br} \bullet \Delta u_{Br}$$

 $C_L = C1 = Glättungskondensator$

 $\hat{\mathbf{u}} = \hat{\mathbf{u}}_2$ = Scheitel- oder Spitzenspannung vor der Glättung

 $R_L = R2 = Lastwiderstand$

f_{Br} = Frequenz der Spannung

 $\Delta u_{Br} = \Delta u_3 = Brummspannung nach der Glättung$

Glättungsfaktor:

$$G = \frac{\Delta u_2}{\Delta u_3} = \frac{u_{2Br}}{u_{3Br}}$$

G immer ≥ 1, je größer G, desto besser

 $\Delta u_2 = u_{2Br} = Brummspannung vor der Glättung$

 $\Delta u_3 = u_{3Br} = Brummspannung nach Glättung$

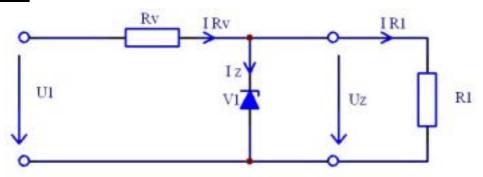
Stabilisierungsfaktor:

$$S = \frac{u_{2Br} \bullet U_{3m}}{u_{3Br} \bullet U_{2m}}$$

S immer \geq 1, je höher S, desto besser

u_{2Br} = Brummspannung vor der Stabilisierung

U_{2m} = Gleichspannungsanteil vor der Stabilisierung


u_{3Br} = Brummspannung nach Stabilisierung

U_{3m} = Gleichspannungsanteil nach der Stabilisierung

E-Reihe:

E6	1,0	1,5	2,2	3,3	4,7	6,8						
											6,8	
E24	1,0	1,1	1,2	1,3	1,5	1,6	1,8	2,0	2,2	2,4	2,7	3,0
L24	3,3	3,6	3,9	4,3	4,7	5,1	5,6	6,2	6,8	7,5	8,2	9,1

Zener-Diode:

$$R_V = \frac{U_1 - U_Z}{I_Z + I_{R1}}$$

 R_V = Vorwiderstand in Ω

 U_1 = Eingangsspannung in V

 U_Z = Zenerspannung in V

 I_Z = Strom durch die Zenerdiode in A

I_{R1} = Strom durch den Lastwiderstand in A

$$I_{Z \max} = \frac{P_{tot}}{U_Z}$$

$$U_Z = \frac{P_{tot}}{I_{Z \max}}$$

$$P_{tot} = I_{Z \max} \bullet U_{Z}$$

$$I_{Z \min} = 0,1 \bullet I_{Z \max}$$

$$P_V = U_Z \bullet I_Z$$

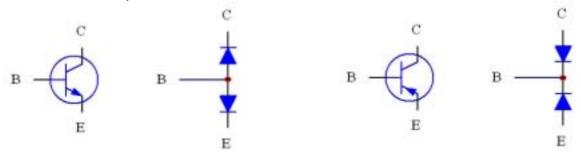
$$R_{V \min} = \frac{U_{1 \max} - U_{Z}}{I_{L \min} + I_{Z \max}}$$

$$\boxed{\begin{split} I_{Z\,\text{min}} &= 0.1 \bullet I_{Z\,\text{max}} \\ \\ R_{V\,\text{min}} &= \frac{U_{1\,\text{max}} - U_{Z}}{I_{L\,\text{min}} + I_{Z\,\text{max}}} \end{split}} \qquad \boxed{ R_{V\,\text{max}} = \frac{U_{1\,\text{min}} - U_{Z}}{I_{L\,\text{max}} + I_{Z\,\text{min}}} \end{split}}$$

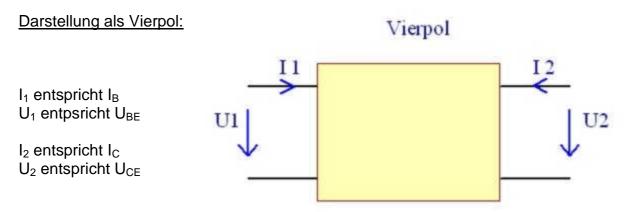
P_{tot} = Maximale Verlustleistung der Zenerdiode in W

P_V = Verlustleistung der Diode in W

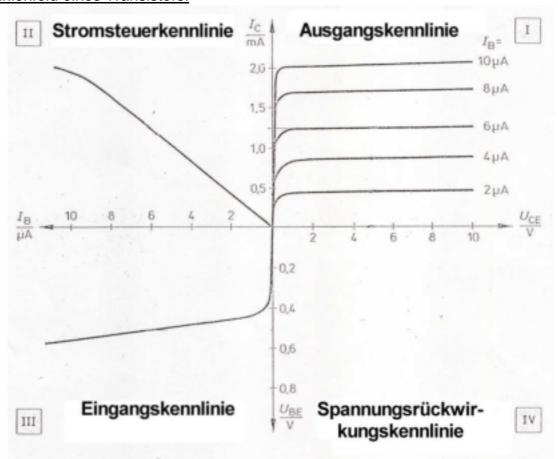
R_{Vmin} = Minimaler Vorwiderstand für Funktion im Arbeitbereich der Diode


R_{Vmax} = Maximaler Vorwiderstand für Funktion im Arbeitbereich der Diode

 R_V muß zwischen R_{Vmin} und R_{Vmax} liegen. Wenn angegeben aus der E-Reihe aussuchen.


Transistor:

NPN-Transistor mit Diodenersatzschaltbild (Ebers-Moll-Methode)


PNP-Transistor mit Diodenersatzschaltbild

Wirkung des Tranistors: Ein kleiner Basisstrom hat einen großen Kollektorstrom zur Folge

Kennlinienfeld eines Transistors:

Berechnungen am Transistor:

Für Gleichstrom gilt:

$$I_C = B \bullet I_B$$

$$B = \frac{I_C}{I_B}$$

$$I_B = \frac{I_C}{B}$$

$$I_E = I_C + I_B$$

$$\boxed{I_E = I_C + I_B} \qquad \boxed{P_{tot} = I_C \bullet U_{CE} + I_B \bullet U_{BE}}$$

I_C = Kollektorstrom; U_{CE} = Kollektor-Emitter-Spannung

I_B = Basisstrom ; U_{BE} = Basis-Emitter-Spannung

 $I_F = Emitterstrom$

B = Verstärkungsfaktor

P_{tot} = maximale Verlustleitstung

Für Wechselstrom gilt:

$$\Delta I_C = \beta \bullet \Delta I_B$$

$$\beta = \frac{\Delta I_C}{\Delta I_B}$$

$$\Delta I_B = \frac{\Delta I_C}{\beta}$$

$$v_U = \frac{\Delta U_{CE}}{\Delta U_{BE}}$$

$$\Delta U_{BE} = \frac{\Delta U_{CE}}{v_U}$$

$$\Delta U_{CE} = v_U \bullet \Delta U_{BE}$$

$$v_I = \beta$$

$$v_P = v_U \bullet v_I$$

$$r_{BE} = \frac{\Delta U_{BE}}{\Delta I_{B}}$$

$$r_{CE} = \frac{\Delta U_{CE}}{\Delta I_{C}}$$

 ΔI_C = Kollektorstromänderung

 ΔI_B = Basisstromänderung

 $\Delta I_F = Emitterstromänderung$

 β = Wechselstromverstärkung

v_I = Wechselstromverstärkung

v_U = Wechselspannungsverstärkung

v_P = Leistungverstärkung für Wechselspannung

ΔU_{CF} = Kollektor-Emitter-Spannungsänderung

 ΔU_{BF} = Basis-Emitter-Spannungsänderung

r_{BE} = Wechselstromwiderstand des Eingangs (Basis-Emitter-Strecke)

r_{CF} = Wechselstromwiderstand des Ausgangs (Kollektor-Emitter-Strecke)

Wechselstromersatzschaltbilder: (~ESB)

Vorgaben:

- 1. <u>Gleichspannungsquellen:</u> Wirken für hohe Frequenzen wie ein Kurzschluß. f $\uparrow \Rightarrow x_C \downarrow$
- 2. Kondensatoren: Wirkt auch wie ein Kurzschluß für Wechselspannung. f $\uparrow \Rightarrow x_C \downarrow$
- 3. Spulen: Stellen für hohe Frequenzen einen hohen Widerstand dar. Ideal $\rightarrow \infty$
- 4. Sonstige Zweipole: Wirken normal

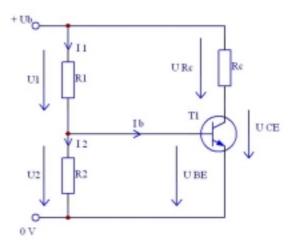
<u>Arbeitspunkteinstellung beim Transistor:</u>

Basisspannungsteiler:

⇒ Spannungsprägung

$$I_2 = n \bullet I_B$$

$$I_B = \frac{I_2}{n}$$


$$I_1 = (n+1) \bullet I_B$$

$$I_B = \frac{I_1}{(n+1)}$$

$$m = \frac{R_C}{R_E}$$

$$R_{1} = \frac{U_{b} - U_{BE}}{I_{1}} = \frac{U_{b} - U_{BE}}{(n+1) \bullet I_{B}}$$

$$R_{2} = \frac{U_{BE}}{n \bullet I_{B}}$$

$$R_C = \frac{U_b - U_{CE}}{I_C} = \frac{U_b - U_{CE}}{B \bullet I_B}$$

q = n = Querstromverhältnis (2 10 ; 10 = beste Spannungseinstellung)

I₁ = Strom durch Widerstand R₁

 I_2 = Strom durch Widerstand R_2

 I_B = Basisstrom

U_b = Betriebsspannung

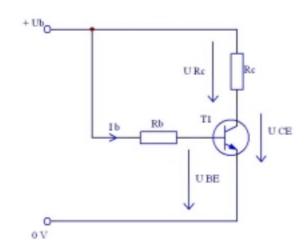
U_{BE} = Basis-Emitterspannung

U_{CE} = Kollektor-Emitterspannung

B = Verstärkungsfaktor

 R_1 , R_2 = Basisspannungsteiler

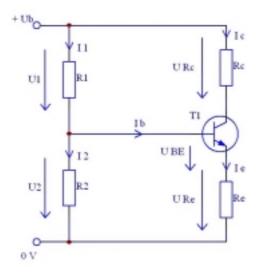
m = Verhältnis von Kollektorwiderstand zu Emitterwiderstand


Basisvorwiderstand:

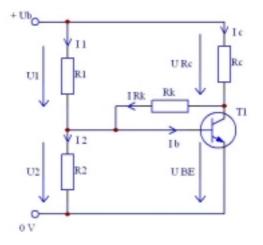
⇒ Stromprägung

$$R_b = \frac{U_b - U_{BE}}{I_B}$$

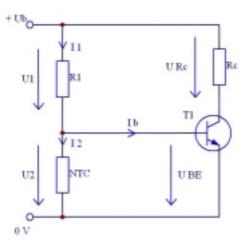
$$R_C = \frac{U_b - U_{CE}}{I_C} = \frac{U_b - U_{CE}}{B \bullet I_B}$$

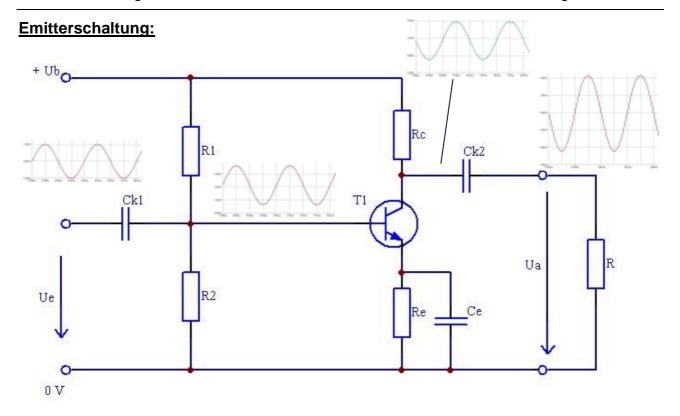

R_b = Basisvorwiderstand

Stabilisierung des Arbeitspunktes beim Transistor


Stromrückkopplung:

$$\begin{array}{l} \vartheta \uparrow \Rightarrow I_{B} \uparrow \Rightarrow I_{C} \uparrow \Rightarrow I_{E} \uparrow \Rightarrow U_{RE} \uparrow \\ \Rightarrow U_{BE} \downarrow \Rightarrow I_{B} \downarrow \Rightarrow I_{C} \downarrow \Rightarrow \vartheta \downarrow \end{array}$$


Spannungsrückkopplung:

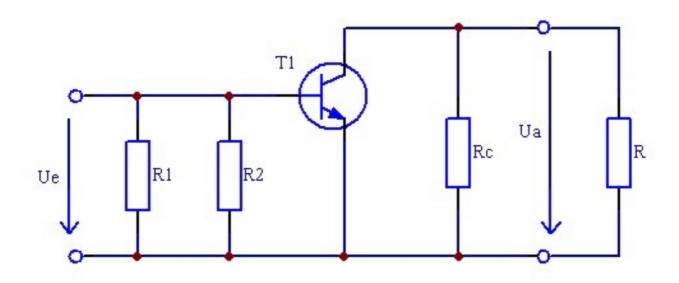

$$\begin{array}{l} \vartheta \uparrow \Rightarrow I_{B} \uparrow \Rightarrow I_{C} \uparrow \\ \Rightarrow I_{Rk} \downarrow \Rightarrow I_{B} \downarrow \Rightarrow I_{C} \downarrow \Rightarrow \vartheta \downarrow \end{array}$$

NTC-Rückkopplung:

$$\begin{array}{l} \vartheta \uparrow \Rightarrow I_{B} \uparrow \Rightarrow I_{C} \uparrow \\ \Rightarrow R_{NTC} \downarrow \Rightarrow U_{BE} \downarrow \Rightarrow I_{B} \downarrow \Rightarrow I_{C} \downarrow \Rightarrow \vartheta \downarrow \end{array}$$

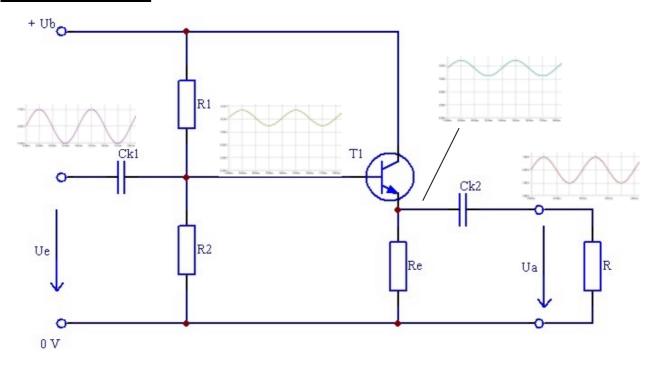
Eigenschaften:

Phasendrehung des Signales: 180°


 $v_1 = groß (100 ... 200)$

 $v_U = groß$

 $v_P = v_I \bullet v_U = \text{sehr groß}$


 \Rightarrow Einsatz als Leistungsverstärker

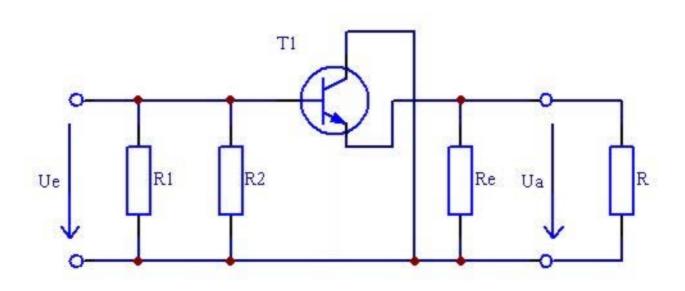
Wechselstromersatzschaltbild: (~ESB)

Oszillogramme der Emitterschaltung: 1.500 V Vor Ck1 (Eingang): 0.000 V -1.500 V 0.000us 25.00us 50.00us 75.00us 100.0us 125.0us 150.0us 175.0ue 200.0us 3.000 V Nach Ck1: 2.000 V 1.000 V V000.0 150.0us 25.00us 125.0ur 200 Ous 0.000us 50.00us 75.00ur 100.0ut 175.Dut 15.00 V 10.00 V Vor Ck2: 5.000 V 0.000 V 25.00us 50.00us 75.00us 100.0ut 125.0ut 150.0ut 175.0us 200.0us 5.000 V 2.500 V 0.000 V Nach Ck2 (Ausgang): -2.500 V -5.000 V 50.00us 150 Dur

Kollektorschaltung:

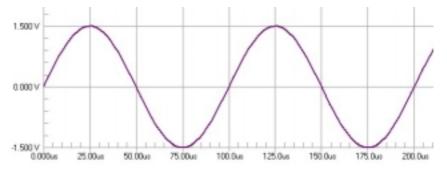
Eigenschaften:

Phasendrehung des Signales: 0°

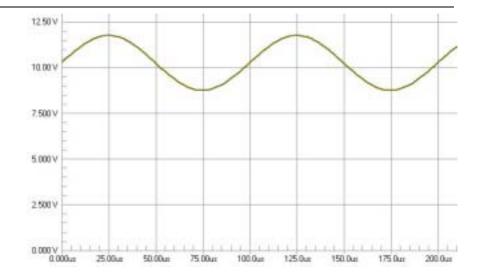

 $v_i = groß (100 ... 200)$

 $v_U \le 1$

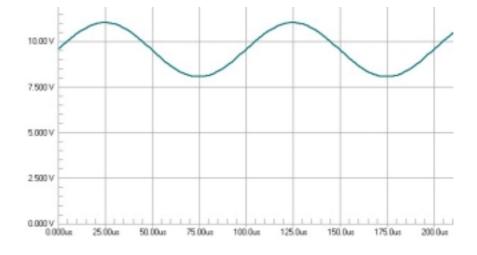
 $v_P = v_I \bullet v_U = groß$

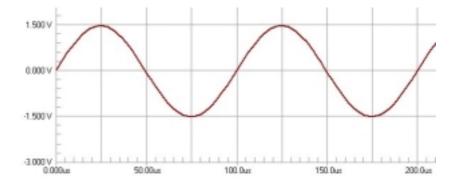

⇒ Einsatz als Impendanz-Wandler (Stromverstärker)

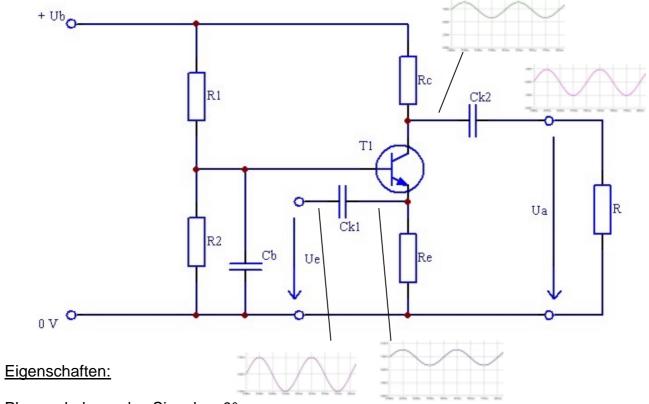
Wechselstromersatzschaltbild: (~ESB)



Oszillogramme der Kollektorschaltung:

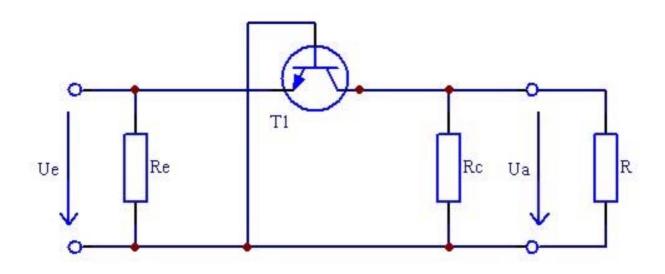

Vor Ck1 (Eingang):

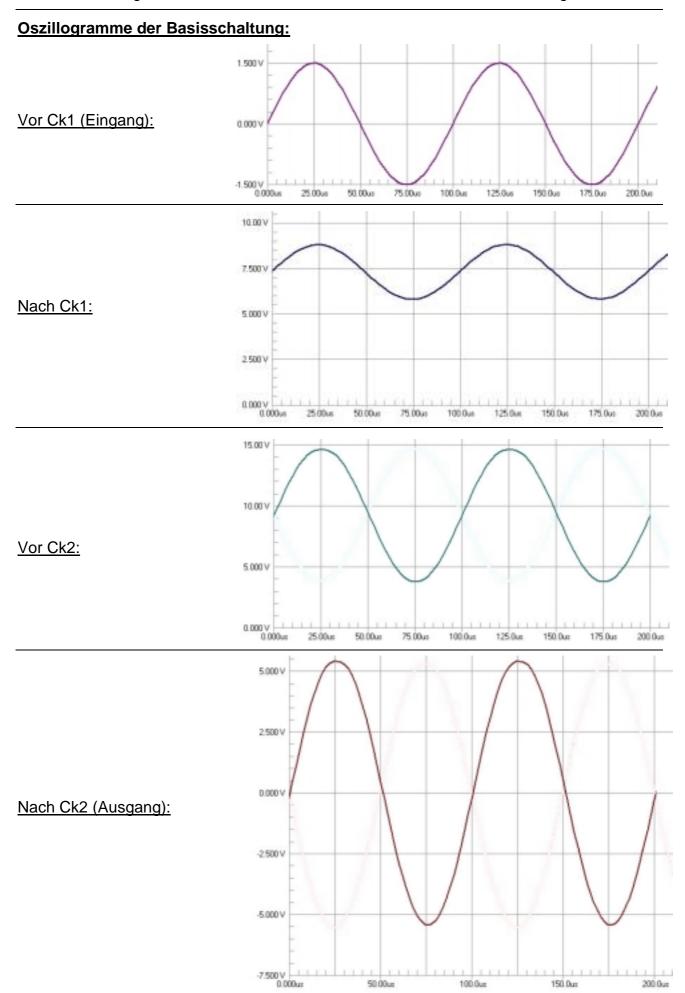

Nach Ck1:


Vor Ck2:

Nach Ck2 (Ausgang):

Phasendrehung des Signales: 0°


 $v_1 \le 1$


 $v_U = \text{groß} (100 \dots 200)$

 $v_P = v_I \bullet v_U = groß$

⇒ Einsatz als HF-Verstärker

Wechselstromersatzschaltbild: (~ESB)

Darstellung des Transistors mit Hilfe der H-Parameter:

H-Matrix (Hybrid-Matrix):

$$\begin{pmatrix} U_1 \\ I_2 \end{pmatrix} = \begin{pmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{pmatrix} \bullet \begin{pmatrix} I_1 \\ U_2 \end{pmatrix}$$

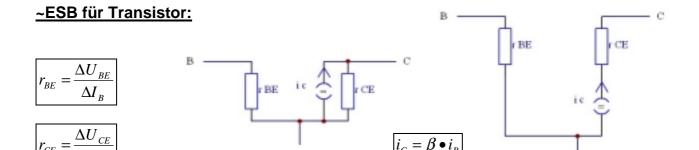
$$\Rightarrow \boxed{U_1 = h_{11} \bullet I_1 + h_{12} \bullet U_2}$$

$$\Rightarrow \boxed{I_2 = h_{21} \bullet I_1 + h_{22} \bullet U_2}$$

$$h_{11} = \frac{\Delta U_{BE}}{\Delta I_B} = r_{BE}$$

$$h_{12} = \frac{\Delta U_{BE}}{\Delta U_{CE}} = \frac{1}{v_U}$$

$$h_{21} = \frac{\Delta I_C}{\Delta I_B} = \beta$$


$$h_{22} = \frac{\Delta I_B}{\Delta U_{CE}} = \frac{1}{r_{CE}}$$

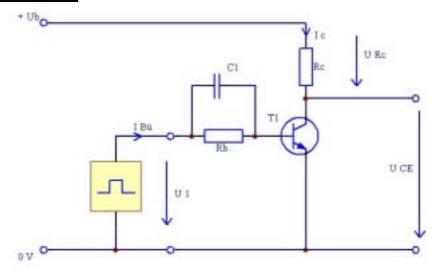
 h_{11} = Wechselstromeingangswiderstand r_{BE}

 h_{12} = Kehrwert der Wechselspannungsverstärkung $\frac{1}{v_{IJ}}$

 h_{21} = Wechselstromverstärkung β

 h_{22} = Kehrwert des Wechselstromausgangswiderstandes (Ausgangsleitwert) $\frac{1}{r_{CF}}$

 ΔI_{C} = Kollektorstromänderung ; ΔI_{B} = Basisstromänderung ; β = Wechselstromverst.


 ΔU_{CE} = Kollektor-Emitter-Spannungsänderung

 ΔU_{BE} = Basis-Emitter-Spannungsänderung

r_{BE} = Wechselstromwiderstand des Eingangs (Basis-Emitter-Strecke)

r_{CE} = Wechselstromwiderstand des Ausgangs (Kollektor-Emitter-Strecke)

Transistor als Schalter:

C₁ = Kondensator zur Verkürzung der Einschaltzeit

Schaltzustand EIN: (A1)

$$\boxed{U_{CE} = U_{CEsat} (\approx 0.1...0.2V)} \qquad \boxed{P_V = U_{CEsat} \bullet I_C} \qquad \boxed{I_{Bii} = \ddot{u} \bullet I_B}$$

$$\boxed{R_C = \frac{U_b - U_{CEsat}}{I_C}} \qquad \boxed{I_C = I_{C \max} = \frac{U_b - U_{CEsat}}{R_C}} \qquad \boxed{P_L = I_C^2 \bullet R_C = I_C \bullet (U_b - U_{CEsat})}$$

Schaltzustand AUS: (A2)

$$\boxed{U_{CE} \approx U_b} \qquad \boxed{I_C = I_{C \operatorname{Re} st} \approx 0}$$

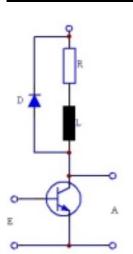
U_{CEsat} = Restspannung am Transistor im Sättigungsbereich (A1)

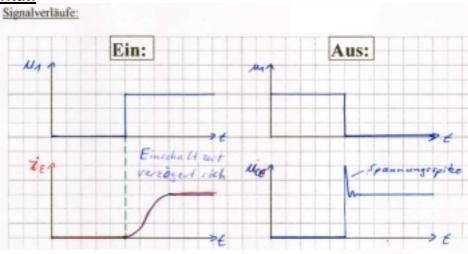
P_V = Verlustleistung am Transistor

I_{Bü} = Übersteuerter Basisstrom

ü = Übersteuerungsfaktor

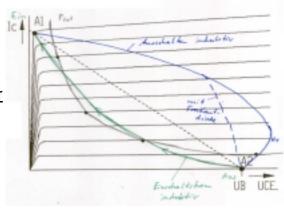
I_B = Basisstrom an der Sättigungsgrenze

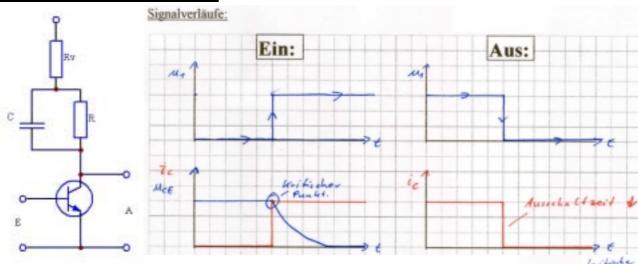

U_b = Betriebsspannung


I_{CRest} = Reststrom im Sperrbereich (A2)

Die Punkte A1 und A2 müssen außerhalb der Ptot -Kennlinie liegen !!!

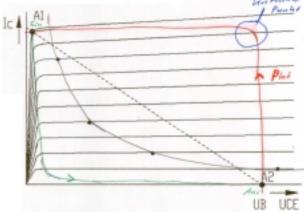
Transistor und Induktivität:

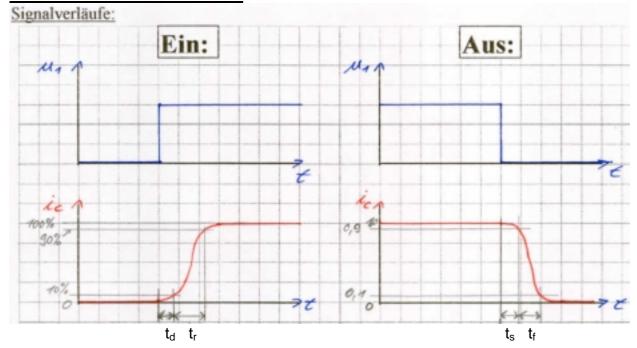



 \Rightarrow Das Einschalten von Induktivitäten ist unproblematisch.

!! Das Ausschalten erzeugt durch Selbstinduktion in der Spule Spannungsspitzen, die den Transistor zerstören können.

⇒ Abhilfe: Freilaufdiode


Transistor und Kondensator:


 \Rightarrow Das Ausschalten kapazitiver Lasten ist unproblematisch

!! Beim Einschalten fließt im ersten Moment ein hoher Strom bei der maximalen Betriebsspannung am Transistor. P_V ist sehr hoch.

⇒ Abhilfe: Vorwiderstand vor RC-Glied

Schaltzeiten von Transistoren:

$$t_{Ein} = t_d + t_r$$

$$t_{Aus} = t_s + t_f$$

t_{Ein} = Einschaltzeit des Transistors

t_d = Verzögerungszeit (delay)

 t_r = Anstiegszeit (rise)

t_{Aus} = Ausschaltzeit des Transistors

t_s = Speicherzeit (save)

t_f = Abfallzeit (fall)

Aus den Schaltzeiten ergibt sich die Grenzfrequenz f_{Gr} des Transistors im Schalterbetrieb:

$$T_{Gr} = t_{Ein} + t_{Aus} = t_d + t_r + t_s + t_f$$

$$f_{Gr} = \frac{1}{T_{Gr}}$$

 T_{Gr} = minimale Schaltzeit des Transistors als Schalter f_{Gr} = Grenzfrequenz (maximale Schaltfrequenz) des Transistors als Schalter

Feldeffekt-Transitoren Übersicht:

Der Name Feldeffekt-Transistor (FET) kommt daher, das die steuernde Größe für den Drainstrom ein elektrisches Feld ist, das zwischen Gate und Source durch die Spannung U_{GS} erzeugt wird. Es fließt kein Gate-Strom ($I_{G} = 0$), daher leistungslose Ansteuerung.

FET's heißen auch unipolare Transistoren, da der Drainstrom zwischen Drain und Source keine Sperrschichten durchlaufen muß, sondern nur in Schichten einer Dotierungsart (N oder P) fließt. Es gibt folgenden FET-Typen:

Sperrschi (J-FE		Isolierschicht-FET's (IG-FET's , MOS-FET's)				
Verarmu	ungstyp	Verarm	ungstyp	Anreicherungstyp		
N-Kanal	P-Kanal	N-Kanal	P-Kanal	N-Kanal	P-Kanal	
	selbstle	selbsts	perrend			

Kennwerte eines FET:

Eingangswiderstand statisch (Gleischspannung)

$$R_E = R_{GS} = \frac{U_{GS}}{I_G}$$

$$I_G = \frac{U_{GS}}{R_E}$$

$$U_{GS} = R_E \bullet I_G$$

$$I_G = \frac{U_{GS}}{R_E}$$

$$U_{GS} = R_E \bullet I_G$$

R_E ist sehr hochohmig, da I_G im nA-Bereich liegt.

Eingangswiderstand dynamisch (Wechselspannung):

$$r_E = \frac{\Delta U_{GS}}{\Delta I_G}$$

$$\Delta I_G = \frac{\Delta U_{GS}}{r_E}$$

$$\Delta I_G = \frac{\Delta U_{GS}}{r_E} \qquad \Delta U_{GS} = r_E \bullet \Delta I_G$$

r_E ist sehr hochohmig.

<u>Ausgangswiderstand statisch (Gleischspannung):</u> $R_{A} = \frac{U_{DS}}{I_{DS}} \qquad I_{DS} = \frac{U_{DS}}{R_{A}} \qquad U_{DS} = R_{A} \bullet I_{DS}$

$$R_A = \frac{U_{DS}}{I_{DS}}$$

$$I_{DS} = \frac{U_{DS}}{R_A}$$

$$U_{DS} = R_A \bullet I_{DS}$$

 R_A ist variabel von ca. 100 Ω bis in den $G\Omega$ -Bereich.

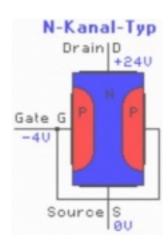
<u>Ausgangswiderstand dynamisch (Wechselspannung):</u>

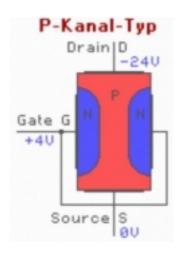
$$r_{A} = \frac{\Delta U_{DS}}{\Delta I_{DS}}$$

$$\Delta I_{DS} = \frac{\Delta U_{DS}}{r_A}$$

$$\Delta I_{DS} = \frac{\Delta U_{DS}}{r_A} \qquad \Delta U_{DS} = r_A \bullet \Delta I_{DS}$$

 r_E in der Praxis von ca. 25 k Ω bis 100 k Ω

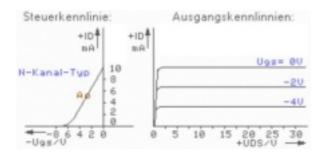

J-FET's (Junction-FET's, selbstleitend):

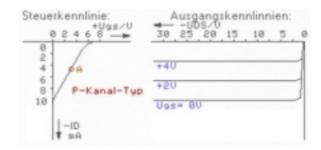

Funktionsprinzip:

Beim J-FET wird der Querschnitt bzw. die Anzahl der freien Ladungsträger durch die angelegte Gate-Spannung verändert.

Ansteuerung:

- Die Spannung U_{GS} muß so gepolt sein, daß der PN-Übergang in Sperrichtung gepolt ist.
- Die Spannung U_{DS} muß so gepolt sein, daß Drain die Ladungsträger aus Source absaugen kann.

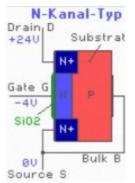


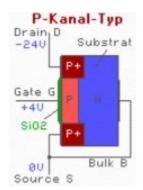


Funktionsweise:

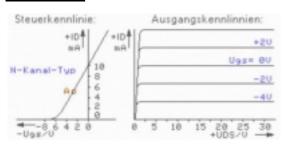
- 1. $U_{GS} = 0V \Rightarrow J\text{-FET leitet}$
- Mit zunehmender Sperrspannung (U_{GS} wird negativer) am Gate verbreitern sich die Sperrschichten der PN-Übergänge und schnüren den Kanal Drain-Source ab. ⇒ J-FET sperrt
- 3. Gatespannung entgegen der Polungsrichtung (z.B. bei N-FET + ans Gate)
 - ⇒ Dioden sind nun in Durchlaßrichtung gepolt. Sperrschicht baut sich schnell ab. Es fließt ein großer Gatestrom.
 - ⇒ !!! Leistungslose Ansteuerung geht verloren. Große Gefahr der Zerstörung !!!

Kennlinien:


MOS-FET's (Metal Oxide Semiconductor) vom Verarmungstyp (selbstleitend):

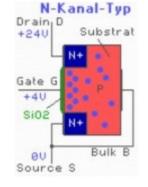

Funktionsprinzip:

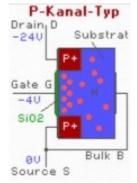
Es ist ein leitender Kanal zwischen Drain und Source vorhanden. Durch Anlegen einer entsprechenden Gate-Spannung werden entweder Ladungsträger aus dem Kanal verdrängt oder in den Kanal gezogen.


Ansteuerung:

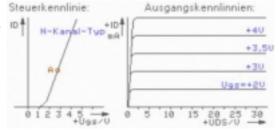
- Das Potential am Gate muß die Ladungsträger im Kanal mehr oder weniger ins Substrat drängen, so daß der Kanal verarmt.
- Die Spannung U_{DS} muß so gepolt sein, daß Drain die Ladungsträger aus Source absaugen kann.

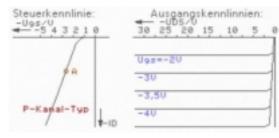
Kennlinien:

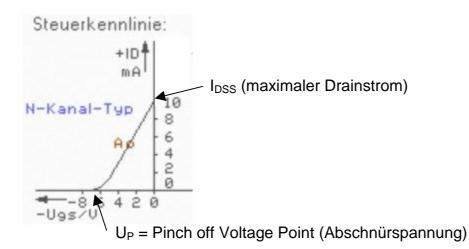

MOS-FET's vom Anreicherungstyp (selbstsperrend):


Funktionsprinzip:

Es ist kein leitender Kanal zwischen Drain und Source vorhanden. Durch anlegen einer entsprechenden Gate-Spannung werden Ladungsträger, die im Substrat als Minoritätsträger vorhanden sind, im Substrat unter den Gate-Anschluß gezogen und bilden dort einen leitenden Kanal. Man nennt diesen Vorgang **Inversion**, da die Minoritätsträger den Ladungstransport übernehmen.


Ansteuerung:


- Das Potential an Gate saugt nach überschreiten einer Schwellenspannung Minoritätsträger aus dem Substrat in die Kanalzone.
- Die Spannung U_{DS} muß so gepolt sein, daß Drain die Ladungsträger aus Source absaugen kann.



Kennlinien:

Die Steuerkennlinie:

Für $|U_{DS}| \ge |U_P|$ stellt sich der maximale Drainstrom ein.

Für $|U_{DS}| \le |U_P|$ sinkt der Drainstrom.

Berechnung:

$$I_D = I_{DSS} \bullet \left(1 - \frac{|U_{GS}|}{|U_P|}\right)^2 \quad \text{für } |U_{DS}| \le |U_P|$$

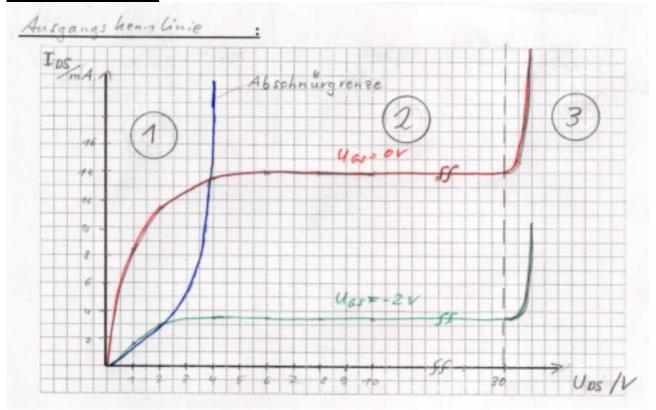
Die Steilheit S:

Die Steilheit S gibt die Verstärkereigenschaften des FET an.

$$S = \frac{\Delta I_{DS}}{\Delta U_{GS}}$$

$$\Delta U_{GS} = \frac{\Delta I_{DS}}{S}$$

$$\Delta I_{DS} = \Delta U_{GS} \bullet S$$


$$\Delta I_{DS} = \Delta U_{GS} \bullet S$$

$$S = Steilheit in \frac{mA}{V}$$

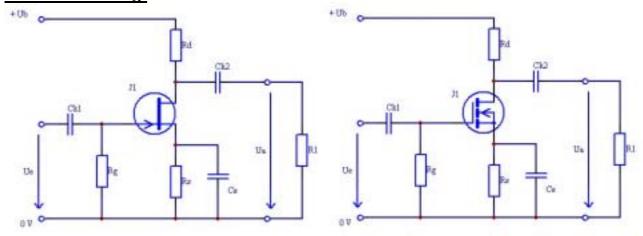
 ΔI_{DS} = Änderung des Drain-Source-Stromes (im Arbeitspunkt) in mA ΔU_{GS} = Änderung der Gate-Source-Spannung (im Arbeitspunkt) in V

FET- Тур	Steilheit
J-FET	2 bis 5 $\frac{mA}{V}$
MOS-FET Verarmungstyp	3 bis 8 $\frac{mA}{V}$
MOS-FET Anreicherungstyp	bis ca. 30 $\frac{mA}{V}$

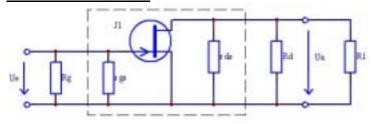
Ausgangskennlinie:

Die Ausgangskennlinie besitzt 3 Bereiche:

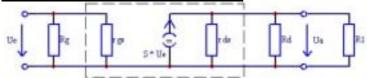
1. Ohm'scher Bereich:


Der Drainstrom I_{DS} ist abhängig von der Drain-Source-Spannung U_{DS}. Im Bereich des Nullpunktes verhält sich der J-FET wie ein ohm'scher Widerstand

2. Abschnürbereich:


Der Drainstrom ist nahezu konstant. (U_{GS} = konstant)

- ⇒ Verstärkerbetrieb
- !! Spannungen dürfen nicht in den Ohm'schen Bereich abfallen, sonst Verzerrung!!
- 3. <u>Durchbruchbereich:</u> $(U_{DS} \ge U_{DSmax})$
 - \Rightarrow sehr starker Drainstromanstieg. Führt meist zur Zerstörung des FET


Source-Schaltung:

Wechselstrom-ESB:

Wechselstrom-ESB mit FET-ESB:

Berechnungen zur Source-Schaltung:

Wechselstromeingangswiderstand:

$$r_{\rm E} = R_{\rm G} \mid\mid R_{\rm GS} \Rightarrow r_{\rm E} = \frac{R_{\rm G} \bullet r_{\rm GS}}{R_{\rm G} + r_{\rm GS}}$$
; da $r_{\rm GS}$ sehr viel hochohmiger als $R_{\rm G} \Rightarrow \boxed{r_{\rm E} \approx R_{\rm G}}$

Wechselstromausgangswiderstand:

$$r_A = r_{DS} \mid\mid R_D \Rightarrow r_A = \frac{r_{DS} \bullet R_D}{r_{DS} + R_D}$$
; da r_{DS} hochohmiger als $R_D \Rightarrow \boxed{r_A \approx R_D}$

Spannungsverstärkung:

ohne Lastwiderstand R1:

$$\boxed{v_U = S \bullet r_A} \Rightarrow \boxed{v_U = S \bullet R_D} \qquad \boxed{S = \frac{v_U}{R_D}} \qquad \boxed{R_D = \frac{v_U}{S}}$$

mit Lastwiderstand R1:

$$v_U = S \bullet (r_A \parallel R_1) \Rightarrow v_U = \frac{S \bullet R_D \bullet R_1}{R_D + R_1}$$

Fortsetzung Berechnungen zur Source-Schaltung:

Einkoppelkondensator:

$$\boxed{x_{Ck1} = r_E} \Rightarrow \boxed{Ck1 = \frac{1}{2 \bullet \pi \bullet f_{GrU} \bullet R_G}} \qquad \boxed{f_{GrU} = \frac{1}{2 \bullet \pi \bullet Ck1 \bullet R_G}} \qquad \boxed{R_G = \frac{1}{2 \bullet \pi \bullet f_{GrU} \bullet Ck1}}$$

$$f_{GrU} = \frac{1}{2 \bullet \pi \bullet Ck1 \bullet R_G}$$

$$R_G = \frac{1}{2 \bullet \pi \bullet f_{GrU} \bullet Ck1}$$

f_{GrU} = Tiefste noch zu verstärkende Frequenz

<u>Auskoppelkondensator:</u> ohne Lastwiderstand R1:

$$\boxed{x_{Ck2} = r_A} \Rightarrow \boxed{Ck2 = \frac{1}{2 \bullet \pi \bullet f_{GrU} \bullet R_D}} \qquad \boxed{f_{GrU} = \frac{1}{2 \bullet \pi \bullet Ck2 \bullet R_D}} \qquad \boxed{R_D = \frac{1}{2 \bullet \pi \bullet f_{GrU} \bullet Ck2}}$$

$$f_{GrU} = \frac{1}{2 \bullet \pi \bullet Ck2 \bullet R_D}$$

$$R_D = \frac{1}{2 \bullet \pi \bullet f_{GrU} \bullet Ck2}$$

f_{GrU} = Tiefste noch zu verstärkende Frequenz

mit Lastwiderstand R1:

$$x_{Ck2} = r_A \parallel R_1$$

$$Ck2 = \frac{R_D + R_1}{2 \bullet \pi \bullet f_{GrU} \bullet R_D \bullet R_1} \qquad f_{GrU} = \frac{R_D + R_1}{2 \bullet \pi \bullet Ck2 \bullet R_D \bullet R_1}$$

f_{GrU} = tiefste noch zu verstärkende Frequenz

Source-Kondensator:

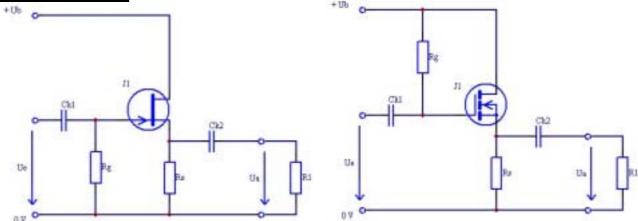
Der Source-Kondensator muß die tiefste noch zu verstärkende Frequenz f_{GrU} der Eingangswechselspannung noch überbrücken können.

$$C_S = 0.2 \bullet \frac{S}{f_{GrU}}$$

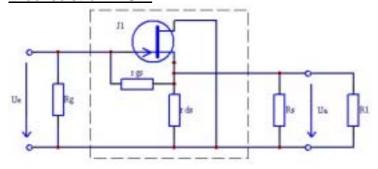
$$C_S = 0.2 \bullet \frac{S}{f_{GrU}}$$

$$f_{GrU} = 0.2 \bullet \frac{S}{C_S}$$

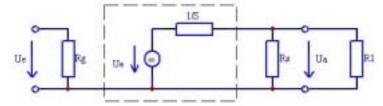
$$S = 5 \bullet C_S \bullet f_{GrU}$$


$$S = 5 \bullet C_S \bullet f_{GrU}$$

f_{GrU} = Tiefste noch zu verstärkende Frequenz


Automatische Gate-Source-Spannungseinstellung:

$$\left|U_{GS}\right| = U_{Rs}$$


Drain-Schaltung:

Wechselstrom-ESB:

Wechselstrom-ESB mit FET-ESB:

Berechnungen zur Drain-Schaltung:

Wechselstromeingangswiderstand (hochohmig):

$$r_E = R_G (1 + S \bullet R_S)$$

$$R_G = \frac{r_E}{\left(1 + S \bullet R_S\right)}$$

$$R_S = \frac{r_E - R_G}{S \bullet R_G}$$

$$S = \frac{r_E - R_G}{R_S \bullet R_G}$$

$$S = \frac{r_E - R_G}{R_S \bullet R_G}$$

Wechselstromausgangswiderstand (niederohmig):

für Lastwiderstand $R_1 > 1k\Omega$:

$$r_A \approx \frac{1}{S}$$

für Lastwiderstand $R_1 < 1k\Omega$:

$$r_A = \frac{1}{S} \parallel R_S \implies r_A = \frac{\frac{1}{S} \cdot R_S}{\frac{1}{S} + R_S} \implies \boxed{r_A = \frac{R_S}{1 + (R_S \cdot S)}}$$

Fortsetzung Berechnungen zur Drain-Schaltung:

Spannungsverstärkung (<1):

$$v_U = \frac{S \bullet R_S}{1 + (S \bullet R_S)}$$

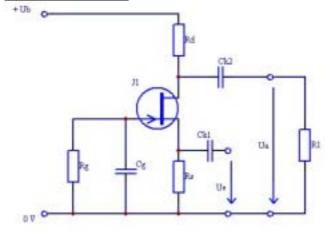
$$v_U = \frac{U_A}{U_E} = \frac{U_{Rs}}{U_{Rs} + U_{GS}}$$

Ein- und Auskoppelkondensator:

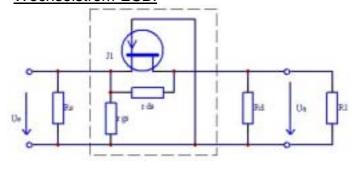
$$Ck1 = \frac{1}{2 \bullet \pi \bullet f_{GrU} \bullet R_G}$$

$$f_{GrU} = \frac{1}{2 \bullet \pi \bullet Ck1 \bullet R_G}$$

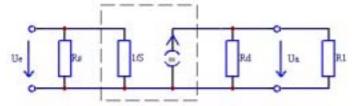
$$R_G = \frac{1}{2 \bullet \pi \bullet f_{GrU} \bullet Ck1}$$


$$Ck2 = \frac{S}{2 \bullet \pi \bullet f_{GrU}}$$

$$f_{GrU} = \frac{S}{2 \bullet \pi \bullet Ck2}$$


$$S = 2 \bullet \pi \bullet f_{GrU} \bullet Ck2$$

f_{GrU} = Tiefste noch zu verstärkende Frequenz


Gate-Schaltung:

Wechselstrom-ESB:

Wechselstrom-ESB mit FET-ESB:

Berechnungen zur Gate-Schaltung:

Wechselstromeingangswiderstand (sehr klein):

$$r_E = R_S \parallel \frac{1}{S} \Rightarrow \boxed{r_E = \frac{R_S}{1 + (R_S \bullet S)}}$$

Wechselstromausgangswiderstand (mittel):

$$r_A = R_D \parallel r_{DS} \implies \boxed{r_A = \frac{R_D \bullet r_{DS}}{R_D + r_{DS}}}$$

Spannungsverstärkung:

$$v_U = S \bullet r_A$$

Gatekondensator:

$$C_G = \frac{10}{2 \bullet \pi \bullet f_{GrU} \bullet R_G}$$

$$f_{GrU} = \frac{10}{2 \bullet \pi \bullet C_G \bullet R_G}$$

$$R_G = \frac{10}{2 \bullet \pi \bullet f_{GrU} \bullet C_G}$$

f_{GrU} = Tiefste noch zu verstärkende Frequenz